
IEEE India Info. Vol. 14 No. 1 Jan - Mar 2019 Page 84

Sensor Hub Environment for Autonomous Cars

Mr. V. P. Sampath

Consultant & Sr. Member, IEEE
ramsampath78@rediffmail.com

SensorHub is designed around a generic bus through which transits all events coming from and going to the connected
sensors and processes. SensorHub drivers convert standard or proprietary sensor/actuators protocols to the SWE common
format so that the data can be communicated through the bus and made available to all other SensorHub components.

All data sent through the bus is described using the SWE Common Data Model so that each message is auto-describing and
can be decoded by any sub-function connected to it. The persistence engine is also connected to the bus and can archive the
desired messages (data, commands, status info, etc...).Web services that use real-time data are also connected to the bus and
can distribute any data through standard web interfaces such as the Sensor Observation Service from OGC.

Figure1.Sensors with modules

Sensor Drivers

Drivers are responsible for converting data going to and from the sensors into SWE Common messages, as well as for
building a SensorML description of the connected sensor. The sensor is then always represented by this description in the
system. Whenever possible, this description is fully or partially generated automatically from information stored in the
sensor device (i.e serial number, calibration tables, etc.). If the sensor does not contain any such information, the driver
generates a very simple document containing only the sensor ID, type and measurement output structure. In any case, this
SensorML description can be further completed by the user when installing the sensor (the user will have to input the
sensor location for instance).

Sensor drivers can be programmed to send data to the bus in various manners. In 'push' mode, the sensor is programmed to
make measurements at regular intervals or when certain conditions are met. In this case, the user does not request a reading
explicitely.In 'poll' mode, the user requests a reading from the sensor everytime. If no requests are made, no data is read.
Both modes can be mixed.

Persistence/Storage Modules

The persistence engine is able to store any data that transits on the bus in a persistent storage. A simple API and several
storage implementations are provided as part of the Sensor Hub software The PERST based storage uses a pure Java
embedded object database which allows very efficient storage of data with a very small footprint (typically for embedded
devices). The PostgreSQL/PostGIS storage allows storing of SWE Common data in a robust SQL database but requires
more powerful hardware and a database server to run.In both cases, the database schema used is generic and can be used to
store any data structure described in SWE Common and allows indexes on the specified fields. The administration console
allows the user to select what messages are to be stored and how (i.e. table name, what indexes should be created, etc.).

Web Service Modules
Web services can be developed and connected to other SensorHub modules to provide remote access to the different
functions.

IEEE India Info. Vol. 14 No. 1 Jan - Mar 2019 Page 85

Sensor Hub software already contains useful OGC services designed to communicate bi-directionnally with the connected
sensors:

• The Sensor Observation Service (SOS) is connected to the bus and to the persistent storage and allows retrieval of

historical data as well as real-time data measurements.
• The Sensor Planning Service (SPS) is connected to the bus and allows to send commands to the connected sensor.
• A simple Web Feature Service (WFS) is connected to the sensor registry and allows one to retrieve the full

SensorML descriptions of all connected sensors as well as simplified features containing only the name and
location of the sensors for display on a map.

All web services are configurable through the administration web interface but most of the configuration is extracted
automatically from the SensorML description of the sensors. The user mainly selects what sensor outputs should be
exposed through SOS and/or what sensor parameters should be able to receive commands from SPS.

Processing Modules

The processing module is connected to the bus and the persistent storage and allows deployment of several processing
instances that can either process data transiting on the bus (aka event-based or streaming processing) or process data from
the storage on-demand (aka on-demand processing).Process chains can be configured using the SensorML language so that
new algorithms can be easily created without writing any code simply by connecting basic functions in the diagram editor
(not currently available). However, the use of SensorML is not required and one can also write a plain Java plugin
compliant with the processing API for implementing a particular algorithm.

The diagram below shows an example OSH instance configured with one sensor, one processing module, one storage
module, SOS and SPS web services:

Figure 2.Deployment
• The sensor is connected via a proper sensor driver that pushes data to the bus as soon as it's available. Full

description of the data structure is made available to other module via the sensor API.
• The processing module instance listens to new sensor data and processes it as soon as it's available. The result is

pushed back to the bus. Inputs and outputs are fully described in SensorML.
• The storage module instance listens to both raw sensor and processed data and archives it all in a file or database.

The archived data is then indexed and made available via the persistence API.
• The SOS service can subscribe to and stream real-time sensor data when a user requests direct connection to it. It

can also fetch data from archive storage on demand. In this case, data can be filtered by time, location, etc.
• The SPS service is used to send commands to the sensor, such as turning the sensor on/off, changing the sampling

rate, programming measurement triggers, etc.

IEEE India Info. Vol. 14 No. 1 Jan - Mar 2019 Page 86

Of course, this is just an example and there are many more ways of configuring SensorHub. In particular, it is possible to:

• Connect several instances of SensorHub via standard OGC services so that one can create a larger network.
• Implement feedback loops so that one sensor can be used to trigger different behavior of another sensor.
• Implement complex processing flows that fuse data from many different sensors

In SensorHub, sensor descriptions (or sensor metadata) are in the SensorML 2.0 format, an international open standard
from the Open Geospatial Consortium (OGC). They are often generated (at least partly) from code using the java
SensorML bindings included in lib-sensorml.These bindings are automatically generated from the 2.0 XML schemas and
thus are a direct reflection of the types and properties that are defined by it.

The general rule is that each XML Schema Complex Type (except OGC Property Types) becomes a Java interface with
appropriate methods to handle each property (get/set/isSet/unSet, getNum/add for multiplicity > 1, etc.).

There is one subtle difference compared to other bindings that could be generated with commonly used tools such as JAXB
or XML Beans: OGC Property Types are not generated as separate objects thus removing many unnecessary layers in the
generated object tree. Instead, properties are handled as a generic OgcProperty object, containing all info carried by the
property such as name, xlink attributes, etc., and accessible via 'getProperty' methods. This means that calls to regular get
methods would return the property value directly which makes constructing the object much more straight forward. This
design allows for handling the entire content model from many OGC schemas without making the resulting object tree too
complex.

About the author

Mr. V. P. Sampath works as a consultant that develops hardware/software co-design tools.

Among his publications are technical articles and papers on FPGA and Embedded systems and
methods as well as textbooks.

He is an active Senior Member of IEEE and Member of Institution of Engineers. He is a mentor for
the semiconductor industries.

Source & Courtesty: https://engineering.stackexchange.com/questions/2176/is-the-reliability-of-automotive-sensor-
technology-impeding-the-success-of-self

